


Join Hands with Microbe

PRODUCT DATA SHEET

Date: Feb. 10, 2021

COTC (Glyoxylase-I inhibitor)

Synonyms: 2-Crotonyloxymethyl-(4R,5R,6R)-4,5,6-trihydroxycyclohex-2-enone

Specifications

Code No.	: 14675
CAS#	: 57449-30-6
Molecular Formula	: C ₁₁ H ₁₄ O ₆
Molecular Weight	: 242.227
Source	: Streptomyces griseosporeus. MD287-CF3
Appearance	: White powder
Purity	: >90% (HPLC)
Long Term Storage	: at -20 ° C
Solubility	: Soluble in MeOH, DMSO, H ₂ O
	Insoluble in Hexane

Application Notes

2-Crotonyloxymethyl-(4*R*,5*R*,6*R*)-4,5,6-trihydroxycyclohex-2-enone (COTC) is an inhibitor of glyoxylase I isolated from the culture filtrate of *Streptomyces griseosporeus* MD287-CF3.^{1,2)} It shows IC₅₀ values against rat liver crude glyoxalase and yeast glyoxalase I at 1.8 mM and 1.4 mM, respectively, in a reaction mixture containing 1.59 mM of reduced glutathione and preincubated for 3 minutes before enzyme addition.^{1,3)} COTC shows a strong growth inhibition of HeLa cells and Ehrlich ascites carcinoma with low toxicity. (LD₅₀ mice: 90 mg/kg i.v.)¹⁾ COTC reacts with glutathione and other SH-compound to form corresponding thioethers.^{2,4)} COTC blocks enzymatic activity of alkaline phosphodiesterase derived from murine lymphoblastoma L5178Y cells (IC₅₀: 60 µg/mI).⁵⁾ COTC and aclarubicin exhibits synergistic activity on aclarubicin-resistant cells, but not on the parental cells.⁵⁾

References

1) A glyoxylase I inhibitor of a new structural type produced by *Streptomyces*. Takeuchi T, et al. J Antibiot. 1975 28(10) 737-742

- 2) The structure of a glyoxylase I inhibitor and its chemical reactivity with SH-compounds. Chimura H, et al. J Antibiot. 1975 28(10) 743-748.
- 3) 2-Crotonyloxymethyl-(4R,5R,6R)-4,5,6-trihydroxycyclohex-2-enone. Matsuda A, et al. Jpn. Kokai Tokkyo Koho 1977, JP 52113946 A
- 4) Reaction of COTC with glutathione: Structure of putative glyoxalase I inhibitor. Huntley C F M, et al. Org Lett. 2000 2(20) 3143-3144.
- 5) Mechanism of action of 2-crotonyloxymethyl-4,5,6-trihydroxycyclohex-2-enone, a SH inhibitory antitumor antibiotic, and its effect on drug-resistant neoplastic cells. Sugimoto Y, *et al. J Antibiot*. 1982 **35**(9) 1222-1230.